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Abstract—In this study, we address the key challenges con-
cerning the accuracy and effectiveness of depth estimation for
endoscopic imaging, with a particular emphasis on real-time
inference and the impact of light reflections. We propose a
novel lightweight solution named EndoDepthL that integrates
Convolutional Neural Networks (CNN) and Transformers to
predict multi-scale depth maps. Our approach includes optimiz-
ing the network architecture, incorporating multi-scale dilated
convolution, and a multi-channel attention mechanism. We also
introduce a statistical confidence boundary mask to minimize the
impact of reflective areas. To better evaluate the performance of
monocular depth estimation in endoscopic imaging, we propose
a novel complexity evaluation metric that considers network
parameter size, floating-point operations, and inference frames
per second. We comprehensively evaluate our proposed method
and compare it with existing baseline solutions. The results
demonstrate that EndoDepthL ensures depth estimation accuracy
with a lightweight structure.

Index Terms—Endoscopic Image Processing, Monocular Depth
Estimation, Biomedical Image Analysis

I. INTRODUCTION

In contemporary surgical practices, monocular depth es-
timation is critical for endoscopic procedures, demanding
both accuracy and efficiency [1]. Monocular cameras such as
endoscopes are widely utilized but encounter the challenge
of losing depth information from a 3D scene to a 2D image.
This loss compels surgeons to rely heavily on their experience
to discern the depth within the field of view, intensifying the
complexity and decision-making pressure of the procedure [1].
While sensors like lidar could provide precise spatial positions,
their integration into endoscopes is fraught with difficulties [2].
The transition of monocular depth estimation methods such
as Monodepth2 [3] and LiteMono [4] from the autonomous
driving field is not straightforward, as endoscopic scenarios
include unique challenges like inconsistent lighting. With
the advancement in machine learning techniques, supervised
learning has been explored to learn the 3D structure from 2D
images [5]. However, obtaining labelled endoscopic training
data is prohibitively costly and challenging. Therefore, self-
supervised learning, which extracts signals from image data
without the need for additional labels, has gained increasing
attention [3], [6]–[8]. Besides, reflections due to smooth organ
surfaces and the real-time acquisition and computation of im-
age data remain to be addressed, and maintaining a consistent
frame rate is also critical. The unique combination of these
challenges highlights the need for specialized depth estimation
solutions in endoscopic applications.

Fig. 1. Comparison of EndoDepthL with the baseline. Our method
effectively deals with the challenges in endoscopy, such as uneven lighting.

The precision of depth estimation is crucial for endoscopic
image analysis and surgery operations. Existing deep learning
methods exhibit limitations in providing accurate and fast
depth estimation results. Earlier solutions primarily hinged
on Convolutional Neural Network(CNN), but the restrictions
of the convolutional kernel make it hard to extract global
features from images. Recently, numerous Transformer-based
approaches have been proposed [4], [9]–[17]. While these
methods effectively enhance the acquisition of global features,
they also largely increase the network’s parameter size, bring-
ing down the inference speed significantly. This will affect
the medical diagnosis results. Since algorithms must operate
in real-time on edge devices like endoscopes, we cannot
directly apply algorithms developed for specialized graphical
computing devices to such equipment [18], [19]. Hence, there
is an urgent to find a method to process endoscopic images
in real-time while improving the accuracy and robustness of
depth estimation, especially under strong light reflections.

To this end, we propose a novel depth estimation method
that concentrates on two main areas: firstly, we optimize the
network architecture design to reduce the parameters of the
network by designing a more lightweight network architecture;
specifically, we incorporate multi-scale dilation convolution,
and a multi-channel attention mechanism in the encoder to
extract image features more efficiently. Moreover, we establish
a confidence mask to minimize the influence of light-reflective
regions on the training process and guide the network to focus
on non-reflective regions.

Compared with existing endoscopic depth estimation meth-
ods, the contributions of our work can be summarized as
follows:



a) Lightweight CNN-Transformer Encoder: We design a
method combining a Convolutional Neural Network (CNN)
and a Transformer for predicting multi-scale depth maps
from input images. This method combines dilated convolution
with a cross-covariance attention mechanism to broaden the
sensory field and capture global features without augmenting
the network parameters. EndoDepthL ensures comparable per-
formance to existing methods while facilitating faster inference
speed.

b) Reflective Mask: We propose a masking mechanism
to address the common issue of reflections in endoscope
environments. This mechanism effectively reduces the impact
of reflective regions on depth estimation. Specifically, when
calculating the loss function, the contribution of reflective
regions is minimized to nearly zero. This enables EndoDepthL
to prioritize depth estimation in non-reflective regions.

c) Complexity Evaluation: We introduce the metric of
parameter size, floating point operations and inference frames
per second in our evaluation metrics to provide a more
comprehensive evaluation of depth estimation over endoscopic
images. To the best knowledge of the author, this is the first
study in the field of endoscopic depth estimation that evaluates
from the complexity perspective. We compare EndoDepthL
with existing methods from both accuracy and efficiency per-
spectives, providing a benchmark for the practical application
of depth estimation over endoscopic images.

In summary, our study provides a lightweight solution for
endoscopic depth estimation that can mitigate the effect of
reflections and is expected to further enhance the efficiency
and safety of laparoscopic surgery.

II. RELATED WORK

A. Self-supervised Mono-Depth Estimation

Self-supervised learning shows potential in depth estima-
tion, with significant advancements due to monocular methods.
Godard et al. [6] introduced a self-supervised monocular
network, using disparity for supervision. Zhou et al. [20] in-
tegrated multi-frame video sequences, estimating depth while
learning camera motion.

However, challenges still exist in scenarios with dynamic
scenes and changing lighting conditions. Zou et al. [21]
address these issues by introducing an unsupervised joint
learning method of depth and flow called Df-net, which
leverages cross-task consistency to model the relative motion
within the scene. On the other hand, Li et al. [22] tackle
the same challenges by proposing Megadepth, a method that
learns single-view depth prediction from a large and diverse
set of Internet photos. There are extra issues with estimating
the depth of small objects, as mentioned by Sattler et al. [23]
and Wang et al. [19].

Recent research addresses these issues from the loss func-
tion and neural network structures. Wang et al. [24] pro-
posed an occlusion-aware loss function, while Guizilini et
al. [25]leveraged fixed pre-trained semantic segmentation net-
works to guide self-supervised representation learning via
pixel-adaptive convolutions. There have been some efforts

to enhance network structures for more efficient feature
extraction. Zhao et al. [26] focused on geometric consis-
tency to aid depth perception, integrating geometry-based
constraints within their network structure. Yin et al. [27]
solved the challenge by enforcing strong supervisory signals
from the underlying 3D geometry, creating an alignment
between monocular depth estimation and surface normals.
Fu et al. [28] proposed a deep ordinal regression network,
employing ordinal depth ranking among pixels to enable a
more robust and discriminative representation of depth infor-
mation. Additionally, Guizilini et al. [29] introduced PackNet,
a novel network structure that employs spatial packing and
unpacking within convolutional layers. Similarly, Yang et al.
[30] developed the LEGO (Learning Edge with Geometry all
at Once) framework, which incorporates geometric constraints
such as edges, planes, and vanishing points to improve depth
estimation accuracy.

Transformer models could be beneficial in self-supervised
monocular depth estimation. Vaswani et al. [31]has built based
on the attention mechanism by Dosovitskiy et al. [32] for
image recognition. Carion et al. [33] proposed DETR, a
Transformer-based object detection model. Transformers have
shown potential in semantic segmentation [34] and deep esti-
mation [35]. A recent work [16] combined plain convolutions
with Transformer blocks to enhance local feature extraction
and global information understanding in visual tasks.

Despite the potential advantages, Transformers still face
challenges with high-resolution images [36] and insufficient
training data [37]. These issues are particularly relevant for
specific applications like endoscopic image depth estimation.

B. Endoscopic Image Analysis

Endoscopic image depth estimation is challenging due to
distinct lighting conditions, complex backgrounds, and preci-
sion requirements. These difficulties have led to the emergence
of various research strategies.

The unique lighting conditions in endoscopy affect image
brightness and color, impacting depth estimation. Kohler et
al. [38] proposed a new color constancy method by sepa-
rating spectral information of endoscopic images. Ma et al.
[39] used Generative Adversarial Network (GAN) to enhance
endoscopic images under inconsistent illumination.

Endoscopic images often contain complex backgrounds like
blood and tissue debris, posing challenges to depth estimation
since image noise affects the performance of depth estima-
tion. To mitigate this, researchers have employed semantic
segmentation techniques. Seo et al. [40]and Zhu et al. [41]
used deep learning to effectively separate regions of interest
from complex medical images, hence improving the estimation
accuracy in the following.

High-resolution images are necessary for precision in en-
doscopic surgery, demanding real-time, efficient depth estima-
tion methods. Tang et al. [42] proposed MobileNets, using
depthwise separable convolution to improve model efficiency.
Zhang et al. [43]introduced ShuffleNet, aiming to enhance
model efficiency significantly.



Fig. 2. Overview of the proposed method. Put the source and target frames into the pose network and the target frame into the depth network. Each
network extracts respective features: the pose network determines the transition from the source to the target, and the depth network produces initial depth
predictions. Then reduces the reconstruction error by leveraging the camera’s inherent parameters. To wrap up, a Statistical Confidence Boundary Mask is
used to counteract the effects of light reflection, ensuring a more precise and stable result.

Despite existing solutions providing several feasible ways
to get depth estimation results, endoscopic image depth esti-
mation remains an open question, requiring further work to
improve accuracy and reliability.

III. METHODOLOGY

A. Self Supervised Loss Function

EndoDepthL is based on a self-supervised principle, as
illustrated in Fig. 2. Define two sequential images It, It+1,
where It is the reference frame and It+1 is the target frame,
as described by [6] and [20]. The depth network D predicts the
per-pixel depth value dt of the reference frame and converts
it into a point cloud Xt:

Xt = dtK
−1pt, (1)

where K is the known camera intrinsic matrix, and pt is the
pixel coordinates. The pose network T predicts the relative
pose from the reference frame to the target frame. Using this
pose, we can transform the point cloud Xt into the coordinate
system of the target frame:

Xt+1 = RXt + t. (2)

The transformed point cloud Xt+1 is then projected back onto
the image plane to obtain the pixel coordinates pt+1 of the
target frame:

pt+1 = KXt+1. (3)

The reprojection pixel value I
′

t is calculated using bilinear
interpolation at the pt+1 location of the target frame image
It+1. The difference between this value and the original
pixel value It of the reference frame is used to calculate the
reprojection error:

LR = It − I
′

t . (4)

Minimizing this error allows the network to learn more accu-
rate depth and relative pose during training.

Reconstruction uses both frames It−1 and It+1, and the
smallest reconstruction error is selected for minimization:

LR = min(LR,t−1, LR,t+1), (5)

where LR,t−1 and LR,t+1 are the reconstruction errors with
It−1 and It+1, respectively.

Following [3], a binary mask µ is defined to handle pixels
that cannot be correctly projected:

µ = min(LR,t−1, LR,t+1) < min(It − It−1, It − It+1), (6)

The associated loss function is:

Lp = µ ∗ LR, (7)

To encourage smoother depth map prediction, a smoothness
loss based on the first-order derivatives of the image and depth
map is added:

Ls = |∂xdt|e−|∂xIt| + |∂ydt|e−|∂yIt|, (8)



Fig. 3. Depth network. We’ve enhanced feature extraction in the Encoder by incorporating an Encoder Block, consisting of convolution and attention
components. We propose two Encoder network sizes(efficiency and performance) to meet varied requirements, as detailed in Table I.

TABLE I
CONVOLUTIONAL PARAMETERS

Efficiency Performance
Input 320×256×3
cov1 160×128×32 160×128×64
cov2 80×64×32 80×64×64

dilation conv rate =1,2,3
cov3 40×32×64 40×32×128

dilation conv rate =1,2,3
cov4 20×16×128 20×16×256

dilation conv rate =1,2,3,2,4,6 rate =1,2,3,2,4,6,3,6,9

The total loss function can be represented as:

L = Lp + λLs, (9)

where λ is an adjustable weight parameter. In summary, the
described method transforms unsupervised depth estimation
into a process that jointly estimates the camera’s depth and
relative pose. This is based on the optimization of reprojection
error, incorporation of a binary mask, and the application of
a smoothness loss.

B. CNN-Transformer Lightweight Depth Network

The proposed architecture comprises a DepthNet with
Encoder-Decoder and a PoseNet with only Encoder. DepthNet,
as illustrated in Fig.3, involves predicting multi-scale depth
maps from an input image, while PoseNet is dedicated solely
to predicting camera motion between sequential frames. Once
these predictions are accomplished, a reconstructed target im-
age is generated, and loss for model optimization is computed.

Traditional convolution operations are limited by their re-
ceptive field. To solve this, dilated convolution [44] is in-
troduced into the model. This method expands the receptive
field without extra parameters by interspersing gaps within the
kernel elements, which can be formally represented as follows:

y[i] =

K∑
k=1

x[i+ r · k]w[k], (10)

where w[k] refers to a filter of length K, and r is the dilation
rate. Dilated convolution’s applied [4] allows the model to
grasp a broader contextual understanding and enhance the
feature representation.

As shown in Table I, we set two sets of convolution
parameters, corresponding to efficiency mode (Eff.) and per-
formance mode (Perf.). Our model applies varying channel
counts for downsampling convolutions, followed by three
dilation convolutions with increasing rates. After the fourth
downsampling, we use additional dilation convolutions with
larger rates to obtain features in larger scales, totaling six
iterations. In performance mode, we add three further dilation
iterations.

Inspired by the Transformer [31], a global feature extraction
method is employed that not only provides local features
but also encompasses global information. Drawing from ap-
proaches like [4], this method utilizes a cross-covariance atten-
tion mechanism [45]. It processes the attention between feature
channels by linearly projecting the input feature map to derive
the Query (Q), Key (K), and Value (V ) components.The
process can be depicted as:

X̂ = Attention(Q,K, V ) +X, (11)

where

Attention(Q,K, V ) = V · softmax(QT ·K). (12)

To further enhance the non-linearity of features, a GELU
[47] activation function is applied to the feature map. Then
merged with the original input feature map to produce the
final output feature map. Like the strategy proposed by [48],
the enhanced feature map is combined with the original input
features, leading to a richer feature map.

The following sections discuss a strategy to reduce the
impact of reflections in depth estimation. We use a mask to
help the model concentrate on key image areas. This approach
ignores regions that reflections might distort.



TABLE II
COMPARATIVE EXPERIMENTAL RESULTS

Method Data Accuracy Complexity
Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ <1.252 δ <1.253 Param. FLOPs FPS

Monodepth2-Res18 [3] M 0.159 1.796 21.905 0.216 0.742 0.938 0.999 14.329M 8.038G 56.6
Monodepth2-Res50 [3] M 0.143 1.466 21.589 0.191 0.757 0.981 >0.999 32.522M 16.663G 32.82
AF-SfMLearner [46] M 0.101 0.678 5.416 0.133 0.881 >0.999 >0.999 14.329M 5.359G 53.65

LiteMono [4] M 0.133 1.225 7.332 0.167 0.791 0.993 >0.999 3.069M 3.355G 60.9
LiteMono-8m [4] M 0.112 0.96 6.556 0.135 0.888 0.998 >0.999 8.766M 7.475G 45.67
EndoDepthL-Eff. M 0.104 0.727 5.38 0.135 0.883 0.998 >0.999 2.143M 1.894G 62.8
EndoDepthL-Perf. M 0.094 0.635 5.229 0.113 0.953 0.998 >0.999 10.882M 8.211G 45.01

TABLE III
METRICS FOR ACCURANCY

Metric Formula

Abs Rel 1
N

∑
i

|di−d̂i|
di

Sq Rel 1
N

∑
i

(di−d̂i)
2

di

RMSE

√
1
N

∑
i

(
di − d̂i

)2

RMSE log

√
1
N

∑
i

(
log di − log d̂i

)2

δ 1
N

∑
i

[
max

(
di
d̂i

, d̂i
di

)
< θ

]

C. Statistical Confidence Boundary Mask

Reflection and shadows may cause inconsistency in pixel
intensities, violating the photometric consistency assumption.
The masking mechanism can effectively mitigate this by
excluding reflection areas from loss computation. The intensity
map L for an input image I is computed:

L = 0.299 · Ir + 0.587 · Ig + 0.114 · Ib, (13)

where Ir, Ig , Ib represent the red, green, blue channels
of image I . A threshold τ distinguishes reflection from non-
reflection areas. The intensity map L is normalized to the [0,
1] interval, producing Ln:

Ln =
L−min(L)

max(L)−min(L)
, (14)

A mask M is generated via a logistic function:

M =
1

1 + e−k·(τ−Ln)
, (15)

where k controls the transition smoothness. This mask
transitions smoothly from 1 to 0 in reflection areas, whereas
in non-reflection areas, values approach 1.

The loss function L′ incorporates the mask:

L′ = M ⊙ L, (16)

where ⊙ represents the Hadamard product. As reflection
areas in the mask have values close to 0, their contribution
to the loss function is negligible, effectively allowing the
model to focus on non-reflective areas. The subsequent section

presents experiments on a public dataset to validate these
methods.

IV. EVALUATION AND VALIDATION

A. Experiment Setup

a) Dataset: SCARED [49] (Surgeries with CAmeras
and Rigid Endoscopes Dataset) consist of endoscopic surgical
videos collected using a da Vinci Xi endoscope and projector
on fresh porcine cadaver abdominal anatomy to obtain high-
quality depth maps. This process is performed at 5-10 different
camera positions, following specific coded structured light
imaging methods [50]. The values in the depth maps are
in millimeters, and invalid pixels are masked out. Since the
camera must remain stationary during each structured light
projection, the dataset is expanded with camera motion and
warped depth maps using known camera poses from the da
Vinci Xi kinematics. These poses are released as a 4x4 matrix,
along with the stereo camera calibration for the sequence. The
dataset is partitioned into training (15,351 frames), validation
(1,705 frames), and testing sets (1,243 frames). The known
intrinsic parameters of the endoscope guide the self-supervised
training process, and during the evaluation phase, depth pre-
diction remains within a 150mm constraint, simulating the
physical limitations of endoscopic devices. Following [3], we
introduce data augmentation procedures, including horizontal
flip, brightness, saturation, contrast adjustment, and hue jit-
ter—with each occurring with a 50% probability.

b) Hyperparameters: The experiments were conducted
on a system equipped with an 8-core CPU, 30GB of memory,
and an NVIDIA T4 GPU, a mid-range unit resonating with
the computational capabilities of edge devices. The system
was hosted on Google Cloud and employed PyTorch version
1.12 for data processing and training. The training parameters
include a batch size of 8 and the AdamW optimizer [51], with
a weight decay of 1× 10−2. The initial learning rate was set
at 5 × 10−4, adhering to a cosine learning rate schedule. A
monocular training session spanning 30 epochs took approxi-
mately 70 hours. The chosen configuration and methodological
approach facilitated accurate modeling within the constraints
of a medium-performance computational environment.

c) Evaluation Metrics: The assessment employs standard
monocular depth estimation metrics: Abs Rel, Sq Rel, RMSE,
RMSE log, δ < 1.25, δ < 1.252andδ < 1.253. As shown
in Table III, di represents the true depth values, d̂i denotes



Fig. 4. Experimental result for our analysis. We extracted representative frames from two distinct video segments. These carefully chosen frames encompass
various perspectives, including frontal and lateral viewpoints, and capture different degrees of organ exposure. In some instances, the organs are fully visible,
while in others, they are partially obscured or covered. From this figure, we can see that the EndoDepthL performance model is better with smoother and
more accurate depth estimation.

the predicted depth values, N is the total number of pixels,
and θ is a threshold. Additionally, we add an efficiency
evaluation, considering the algorithm’s overhead, including
parameter size, floating point operations, and inference frames
per second.

B. Baseline Methods

To highlight EndoDepthL’s performance, we compared it
with some popular baselines: Monodepth2, LiteMono, and AF-
SfMLearner.

Monodepth2 [3], a typical classic method that includes
versions ResNet18 and ResNet50, for benchmarking our study.
Known for handling moving objects and occlusions, we fol-
lowed its original parameter settings in experiments.

Lite-Mono [4], designed for autonomous driving chal-
lenges, blends CNN’s local processing with Transformers’
global capabilities. We adapted this method for endoscopic
dataset, including fine-tuning the input size.

AF-SfMLearner [46], selected from open-source works,
tackles endoscopic challenges such as inconsistent illumina-
tion. Its technique ”Appearance Flow” aligns with our study’s
unique challenges.

TABLE IV
ABLATION STUDY RESULT

Method AbsRel SqRel RMSE RMSElog δ<1.25
EndoDepthL-Eff. 0.104 0.727 5.380 0.135 0.883

w/o mask 0.119 1.011 6.449 0.172 0.833
EndoDepthL-Perf. 0.094 0.635 5.229 0.113 0.953

w/o mask 0.102 0.694 5.312 0.132 0.908

C. Experimental Results

We compare EndoDepthL with baseline methods, and the
results are listed in Table II and Fig. 4, covering performance
and efficiency. “M” denotes SCARED monocular videos. Our
experiments are trained from scratch, and the best results are
marked in bold. Our model demonstrates enhanced perfor-
mance compared to the baseline methods. Specifically, it at-
tains results akin to those of AF-SfMLearner but operates with
reduced complexity. The efficiency of EndoDepthL allows for
a 30% reduction in network size while improving performance,
or alternatively, it can decrease both the size and complexity
by 3-5 times while maintaining similar levels of effectiveness.

We also compared with algorithms from autonomous driv-
ing, such as Litemono. EndoDepthL shows greater stability,
which is essential for handling reflections on smooth organ



surfaces in endoscopy. This stability leads to superior perfor-
mance, with a four-fold increase in efficiency.

D. Ablation Study

We conducted an ablation study to validate the proposed
mask module’s effectiveness. The results are presented in Ta-
ble IV and underscore the crucial function of this component.
The experimental conditions were consistent with those of the
previous comparative study.

The confidence mask is a vital part of our architecture,
designed to diminish the impact of reflections during training.
Without it, the reflections substantially affect the performance
of EndoDepthL, increasing extreme values and having a no-
ticeable influence on the Root Mean Square Error (RMSE).
In our tests, removing the confidence mask led to an approx-
imately 10% increase in RMSE, accentuating the importance
of managing reflections. Moreover, we observed a more pro-
nounced decline in the processing ability of smaller, efficiency-
oriented models when the mask was absent. This ablation
study further substantiates the essential role of neutralizing
reflection effects and establishes that our mask module is
integral to improving the performance of lightweight networks.

V. CONCLUSION

This paper proposes a novel lightweight monocular depth
estimation approach tailored for endoscopic applications. Uti-
lizing a hybrid CNN and Transformer architecture, Endo-
DepthL adeptly extracts multi-scale local and global features
from the endoscopic images. In addition, by integrating the
confidence mask, EndoDepthL efficiently mitigates the detri-
mental effects of reflections, which is a standout challenge
in endoscopic depth estimation. Experimental validation on
the SCARED dataset demonstrates underscores our method’s
capability to balance low computational complexity with high
estimation accuracy, paving the way for real-world deployment
of depth estimation techniques in endoscopy.
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